![IMG_9165_edited.jpg](https://static.wixstatic.com/media/bba39b_15cfb2425d304efc90d1e6de69c8eedd~mv2.jpg/v1/fill/w_674,h_255,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/bba39b_15cfb2425d304efc90d1e6de69c8eedd~mv2.jpg)
Central Chile
![12.jpg](https://static.wixstatic.com/media/bba39b_6d032790dec04af6a05edfdeb3a3afd8~mv2.jpg/v1/fill/w_266,h_378,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/12.jpg)
![GOPR0159.jpg](https://static.wixstatic.com/media/bba39b_fcec353148cc447d9e52e4fd1cdb1c54~mv2.jpg/v1/fill/w_255,h_186,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/GOPR0159.jpg)
For most organisms, predation is a near constant threat. Many prey species have therefore adapted ways to detect and avoid predators.
​
I explored this complex relationship through two study systems, both from the subtidal zone. One study system explored how invertebrate kairomones (chemical cues that come from a predator and allow a prey animal to detect the predator's presence) affect the behavior of a small subtidal snail, Tegula tridentata. The second system explored how the presence of a predator affects habitat choice in a cryptobenthic blenny, known locally as "trombollito" (Helcogrammoides cunninghami).
​
I traveled to Estación Costera de Investigaciones Marinas in Las Cruces, Chile four times from 2015-2019, and I completed my undergraduate Honors Thesis at the marine station as well.
![4.jpg](https://static.wixstatic.com/media/bba39b_ae549a0ae73747a4b89e923bbc7c73d6~mv2.jpg/v1/fill/w_286,h_186,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/4.jpg)
![GOPR0982.jpg](https://static.wixstatic.com/media/bba39b_ff25f78d532e4ae3abe7186cc4087e70~mv2.jpg/v1/fill/w_254,h_186,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/GOPR0982.jpg)
![DSC_0602.JPG](https://static.wixstatic.com/media/bba39b_0faf0da2b2da40f8b34eed89a40ffea6~mv2.jpg/v1/fill/w_254,h_170,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/DSC_0602_JPG.jpg)